A Geometrically Nonlinear Three Dimensional Cohesive Crack Method for Reinforced Concrete Structures


Goangseup Zi
Assistant professor, Department of Civil, Environmental & Architectural Engineering, Korea University, 5 Ga 1, An-Am Dong, Sung-Buk Gu, Seoul, 136-701, Korea; Tel.: +82-2-3290-3324
Timon Rabczuk
Senior Lecturer, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand; Tel: +64-3-364-8836
Stéphane Bordas
Lecturer (assistant professor), Civil Engineering Department, University of Glasgow, Rankine building, G12 8LT, Glasgow, UK; Tel: +44(0)141 330 4075
Hung Nguyen-Xuan
Singapore-MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3, Singapore, 117576, National University of Singapore, 10 Kent Ridge Crescent 119260, Singapore; Tel.: +65 98604962

A three dimensional meshfree method for modeling arbitrary crack initiation and crack growth in reinforced concrete structure is presented. This meshfree method is based on a partition of unity concept and formulated for geometrically nonlinear problems. The crack kinematics are obtained by enriching the solution space in order to capture the correct crack kinematics. A cohesive zone model is used after crack initiation. The reinforcement modeled by truss or beam elements is connected by a bond model to the concrete. We applied the method to model the fracture of several reinforced concrete structures and compared the results to experimental data.

Keywords: Prestressed concrete; Reinforced concrete; Cohesive zone modelling; Crack growth; Brittle fracture

Reinforced concrete structures often undergo extensive cracking before failure. Tracking dense failure patterns by finite element methods is quite difficult. Therefore, particle methods are very attractive for this class of problems.

In this paper, we present a three-dimensional cohesive crack method for reinforced concrete structures. We model cracking in the concrete with an extended element-free Galerkin method (XEFG) that is coupled to finite elements for the reinforcement following the general formulation of geometrically nonlinear problems. The ill-posed IBVP is treated by means of cohesive surfaces in the post localization domain.

References

Belytschko T, Lu Y, Gu L. Element-free galerkin methods, Int J Numer. Meth. in Engineering 1994;37:229-256.
Belytschko T, Lu Y. Element-free galerkin methods for static and dynamic fracture, Int J Solids and Structures 1995;32:2547-2570.
Belytschko T, Lu Y, Gu L. Crack propagation by element-free galkerin methods, Engng Fract Mech 1994;51:295-315.
Belytschko T, Tabbara M. Dynamic fracture using element-free galerkin methods, Int J Numer. Meth. in Engineering 1996;39(6):923-938.
Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks, Comput Mech 2007;39(6):743-760.
Ventura G, Xu J, Belytschko T. A vector level set method and new discontinuity approximations for crack growth by EFG, Int J Numer. Meth. in Engineering 2002;54(6):923-944.
Cox J, Herrmann L. Validation of a plasticity bond model for steel reinforcement, Mech Coh Fric Mat 1999;4:361-389.
Cox J, Herrmann L. Development of a plasticity bond model for steel reinforcement, Mech Coh Fric Mat 1998;3:155-180.
Rabczuk T, Belytschko T. Application of meshfree particle methods to static fracture of reinforced concrete structures, Int J Fract 2006;137(1-4):19-49.
Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods, Int J Numer. Meth. in Engineering 1996;39(6):923-938.
Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continuous Structures, John Wiley and Sons, Chichester, 2000.
Belytschko T, Lu Y, Gu L. Crack propagation by element-free Galerkin methods, Engng Fract Mech 1995;51(2):295-315.
Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engng Fract Mech - online, DOI:10.1016/j.engframech.2007.05.010.
Zi G, Rabczuk T, Wall W. Extended meshfree methods without the branch enrichment for cohesive cracks, Comput Mech 2007;40(2):367-382.
Wells GN, de Borst R, Sluys LJ. A consistent geometrically non-linear approach for delamination, Int J Numer. Meth. in Engineering 2002;54(9):1333-1355.
Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics, Comput Mech 2007;40(3): -in online, DOI:10.1007/s00466-006-0122-1.
Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using sph/mlsph, Int J Numer. Meth. in Engineering 2003;56:1421-1444.
Chen W. Constitutive Equations for Engineering Materials, Volume 2: Plasticity and Modeling, Elsevier, Amsterdam-London-New York-Tokio, 1994.
Stempniewski L, Eibl J, Rabczuk T. Der endbereich von im werk vorgespannten fertigteiltraegern-hohlplatten, Tech. rep., Institut fuer Massivbau und Baustofftechnologie, University of Karlsruhe; 2001.
Eibl J, Stempniewski L, Rabczuk T. Der endbereich von im werk vorgespannten fertigteiltraegern-hohlplatten, final report, Universitaet Karlsruhe, Institut fuer Massivbau und Baustofftechnologie; 2002.
Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput Meth Appl Mech Engng 2007;196(29-30):2777-2799.
Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle methods in 2D and 3D, Int J Numer Meth Engng 2005;63(11):1559-1582.
Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures, Int J Solids and Structures 2005;42(5-6):1327-1354.
Akkermann J. Rotationsverhalten von stahlbeton-rahmenecken, Ph.D. thesis, University of Karlsruhe, Institute for Concrete Materials; 2000.
Lemaitre J. Evaluation of dissipation and damage in metal submitted to dynamic loading, Proc ICM 1 1971.
Bažant Z, Oh B. Crack band theory for fracture in concrete, Materials and Structures 1983;16:155-177.
Hillerborg A, Modéer M, Peterson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 1976;6:773-782.
Jirasek M, Zimmermann T. Analysis of rotating crack model, ASCE J Engineering Mechanics 1998;124:842-851.
Jirasek M, Zimmermann T. Rotating crack model with transition to scalar damage, ASCE J Engineering Mechanics 1998;124(3):277-284.
Bažant ZP, Pijaudier-Cabot G. Nonlocal continuum damage, localization instabilities and convergence, ASCE J Engineering Mechanics 1988;55:287-293.
Bažant Z. Why continuum damage is nonlocal: Micromechanics arguments, ASCE J Engineering Mechanics 1991;117(5):1070-1087.
Bažant ZP, Jirasek M. Non-local integral formulations of plasticity and damage: survey of process, ASCE J Engineering Mechanics 2002;128(1):1119-1149.
Bažant ZP, Li Z. Modulus of rupture: Size effect due to fracture initiation in boundary layer, ASCE J Engineering Mechanics 1995;121(4):739-746.
Bažant ZP. Size effect in blunt fracture: Concrete, rock, metal, ASCE J Engineering Mechanics 1984;110:518-535.
Bažant ZP, Yu Q, Zi G., Choice of concrete fracture test for a standard, Int J Fract 2003;118:303-337.
Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP. Gradient enhanced damage for quasi-brittle materials, Int J Numer. Meth. in Engineering 1996;39(19):3391-3403.
Zi G, Bažant ZP. Eigenvalue method for computing size effect of cohesive cracks with residual stress, with application to kink bands in composites, Int J of Engng Sci 2003;41(13-14):1519-1534.
Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix, Model Simulat Mater Sci Engng 1993;1:111-132.
Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids, J Mech Phys Solids 1994;42:1397-1434.
Potyondy D, Wawrzynek P, Ingraffea A. An algorithm to generate quadrilaterial or triangular element surface meshes in arbitrayr domains with applications to crack-propagation, Int J Numer. Meth. in Engineering 1995;38:2677-2701.
Belytschko T, Moes N, Usui S, Parimi C. Arbitrary discontinuities in finite elements, Int J Numer. Meth. in Engineering 2001;50(4):993-1013.
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing, Int J Numer. Meth. in Engineering 1999;45(5):601-620.
Bittencourt T, Wawrzynek P, Ingraffea A. Quasi-automatic simulation of crack propagation for 2D LEFM problems, Engng Fract Mech 1996;55(2):321-334.
Zi G, Belytschko T. New crack-tip elements for XFEM and applications to cohesive cracks, Int J Numer. Meth. in Engineering 2003;57:2221-2240.
Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing, Int J Numer. Meth. in Engineering 1999;46(1):133-150.


No comments:

Precast/Prestressed Concrete Design Headline Animator

Link List