Goangseup Zi
Assistant professor, Department of Civil,
Environmental & Architectural Engineering, Korea University, 5 Ga 1, An-Am
Dong, Sung-Buk Gu, Seoul, 136-701, Korea; Tel.: +82-2-3290-3324
Timon Rabczuk
Senior Lecturer, Department of Mechanical
Engineering, University of Canterbury, Christchurch, New Zealand; Tel:
+64-3-364-8836
Stéphane Bordas
Lecturer (assistant professor), Civil
Engineering Department, University of Glasgow, Rankine building, G12 8LT, Glasgow, UK;
Tel: +44(0)141 330 4075
Hung Nguyen-Xuan
Singapore-MIT Alliance (SMA), E4-04-10, 4
Engineering Drive 3, Singapore, 117576, National University of Singapore, 10
Kent Ridge Crescent 119260, Singapore; Tel.: +65 98604962
A three dimensional meshfree method for modeling arbitrary crack
initiation and crack growth in reinforced concrete structure is presented. This
meshfree method is based on a partition of unity concept and formulated for
geometrically nonlinear problems. The crack kinematics are obtained by
enriching the solution space in order to capture the correct crack kinematics.
A cohesive zone model is used after crack initiation. The reinforcement modeled
by truss or beam elements is connected by a bond model to the concrete. We
applied the method to model the fracture of several reinforced concrete
structures and compared the results to experimental data.
Keywords: Prestressed concrete; Reinforced concrete; Cohesive zone
modelling; Crack growth; Brittle fracture
Reinforced concrete structures often undergo extensive cracking before
failure. Tracking dense failure patterns by finite element methods is quite
difficult. Therefore, particle methods are very attractive for this class of
problems.
In this paper, we present a three-dimensional cohesive crack method for
reinforced concrete structures. We model cracking in the concrete with an
extended element-free Galerkin method (XEFG) that is coupled to finite elements
for the reinforcement following the general formulation of geometrically nonlinear
problems. The ill-posed IBVP is treated by means of cohesive surfaces in the
post localization domain.
References
Belytschko T, Lu Y, Gu L. Element-free
galerkin methods, Int J Numer. Meth. in Engineering 1994;37:229-256.
Belytschko T, Lu Y. Element-free galerkin
methods for static and dynamic fracture, Int J Solids and Structures
1995;32:2547-2570.
Belytschko T, Lu Y, Gu L. Crack propagation by
element-free galkerin methods, Engng Fract Mech 1994;51:295-315.
Belytschko T, Tabbara M. Dynamic fracture
using element-free galerkin methods, Int J Numer. Meth. in Engineering
1996;39(6):923-938.
Rabczuk T, Zi G. A meshfree method based on
the local partition of unity for cohesive cracks, Comput Mech
2007;39(6):743-760.
Ventura G, Xu J,
Belytschko T. A vector level set method and new discontinuity approximations
for crack growth by EFG, Int J Numer. Meth. in Engineering 2002;54(6):923-944.
Cox J, Herrmann L. Validation of a plasticity
bond model for steel reinforcement, Mech Coh Fric Mat 1999;4:361-389.
Cox J, Herrmann L. Development of a plasticity
bond model for steel reinforcement, Mech Coh Fric Mat 1998;3:155-180.
Rabczuk T, Belytschko T. Application of
meshfree particle methods to static fracture of reinforced concrete structures,
Int J Fract 2006;137(1-4):19-49.
Belytschko T, Tabbara M. Dynamic fracture
using element-free Galerkin methods, Int J Numer. Meth. in Engineering
1996;39(6):923-938.
Belytschko T, Liu WK, Moran B. Nonlinear
Finite Elements for Continuous Structures, John Wiley and Sons, Chichester, 2000.
Belytschko T, Lu Y, Gu L. Crack propagation by
element-free Galerkin methods, Engng Fract Mech 1995;51(2):295-315.
Bordas S, Rabczuk T, Zi G. Three-dimensional
crack initiation, propagation, branching and junction in non-linear materials
by an extended meshfree method without asymptotic enrichment, Engng Fract Mech
- online, DOI:10.1016/j.engframech.2007.05.010.
Zi G, Rabczuk T, Wall W. Extended meshfree
methods without the branch enrichment for cohesive cracks, Comput Mech
2007;40(2):367-382.
Wells GN, de Borst R, Sluys LJ. A consistent
geometrically non-linear approach for delamination, Int J Numer. Meth. in
Engineering 2002;54(9):1333-1355.
Rabczuk T, Bordas S, Zi G. A three-dimensional
meshfree method for continuous multiple-crack initiation, propagation and
junction in statics and dynamics, Comput Mech 2007;40(3): -in online,
DOI:10.1007/s00466-006-0122-1.
Rabczuk T, Eibl J. Simulation of high velocity
concrete fragmentation using sph/mlsph, Int J Numer. Meth. in Engineering
2003;56:1421-1444.
Chen W. Constitutive Equations for Engineering
Materials, Volume 2: Plasticity and Modeling, Elsevier, Amsterdam-London-New York-Tokio,
1994.
Stempniewski L, Eibl J, Rabczuk T. Der
endbereich von im werk vorgespannten fertigteiltraegern-hohlplatten, Tech.
rep., Institut fuer Massivbau und Baustofftechnologie, University of Karlsruhe;
2001.
Eibl J, Stempniewski L, Rabczuk T. Der
endbereich von im werk vorgespannten fertigteiltraegern-hohlplatten, final
report, Universitaet Karlsruhe, Institut fuer Massivbau und
Baustofftechnologie; 2002.
Rabczuk T, Belytschko T. A three dimensional
large deformation meshfree method for arbitrary evolving cracks, Comput Meth
Appl Mech Engng 2007;196(29-30):2777-2799.
Rabczuk T, Belytschko T. Adaptivity for
structured meshfree particle methods in 2D and 3D, Int J Numer Meth Engng
2005;63(11):1559-1582.
Rabczuk T, Akkermann J, Eibl J. A numerical
model for reinforced concrete structures, Int J Solids and Structures
2005;42(5-6):1327-1354.
Akkermann J. Rotationsverhalten von stahlbeton-rahmenecken,
Ph.D. thesis, University
of Karlsruhe, Institute
for Concrete Materials; 2000.
Lemaitre J. Evaluation of dissipation and
damage in metal submitted to dynamic loading, Proc ICM 1 1971.
Bažant Z, Oh B. Crack band theory for fracture
in concrete, Materials and Structures 1983;16:155-177.
Hillerborg A, Modéer M, Peterson PE.
Analysis of crack formation and crack growth in concrete by means of fracture
mechanics and finite elements, Cement and Concrete Research 1976;6:773-782.
Jirasek M, Zimmermann T. Analysis of rotating
crack model, ASCE J Engineering Mechanics 1998;124:842-851.
Jirasek M, Zimmermann T. Rotating crack model
with transition to scalar damage, ASCE J Engineering Mechanics 1998;124(3):277-284.
Bažant ZP, Pijaudier-Cabot G. Nonlocal
continuum damage, localization instabilities and convergence, ASCE J
Engineering Mechanics 1988;55:287-293.
Bažant Z. Why continuum damage is nonlocal:
Micromechanics arguments, ASCE J Engineering Mechanics 1991;117(5):1070-1087.
Bažant ZP, Jirasek M. Non-local integral
formulations of plasticity and damage: survey of process, ASCE J Engineering
Mechanics 2002;128(1):1119-1149.
Bažant ZP, Li Z. Modulus of rupture: Size
effect due to fracture initiation in boundary layer, ASCE J Engineering
Mechanics 1995;121(4):739-746.
Bažant ZP. Size effect in blunt fracture:
Concrete, rock, metal, ASCE J Engineering Mechanics 1984;110:518-535.
Bažant ZP, Yu Q, Zi G., Choice of concrete
fracture test for a standard, Int J Fract 2003;118:303-337.
Peerlings RHJ, de Borst R, Brekelmans WAM, de
Vree JHP. Gradient enhanced damage for quasi-brittle materials, Int J Numer.
Meth. in Engineering 1996;39(19):3391-3403.
Zi G, Bažant ZP. Eigenvalue method for
computing size effect of cohesive cracks with residual stress, with application
to kink bands in composites, Int J of Engng Sci 2003;41(13-14):1519-1534.
Xu XP, Needleman A. Void nucleation by
inclusion debonding in a crystal matrix, Model Simulat Mater Sci Engng
1993;1:111-132.
Xu XP, Needleman A. Numerical simulations of fast
crack growth in brittle solids, J Mech Phys Solids 1994;42:1397-1434.
Potyondy D, Wawrzynek P, Ingraffea A. An
algorithm to generate quadrilaterial or triangular element surface meshes in
arbitrayr domains with applications to crack-propagation, Int J Numer. Meth. in
Engineering 1995;38:2677-2701.
Belytschko T, Moes N, Usui S, Parimi C.
Arbitrary discontinuities in finite elements, Int J Numer. Meth. in Engineering
2001;50(4):993-1013.
Belytschko T, Black T. Elastic crack growth in
finite elements with minimal remeshing, Int J Numer. Meth. in Engineering
1999;45(5):601-620.
Bittencourt T, Wawrzynek P, Ingraffea A.
Quasi-automatic simulation of crack propagation for 2D LEFM problems, Engng
Fract Mech 1996;55(2):321-334.
Zi G, Belytschko T. New crack-tip elements for
XFEM and applications to cohesive cracks, Int J Numer. Meth. in Engineering
2003;57:2221-2240.
Moes N, Dolbow J, Belytschko T. A finite
element method for crack growth without remeshing, Int J Numer. Meth. in
Engineering 1999;46(1):133-150.
No comments:
Post a Comment